Referências bibliográficas

Consulta tabela Qualis.


Referências dos TIs:

[1] PLANALTO. LEI Nº 12.305, DE 2 DE AGOSTO DE 2010. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm. Acesso em: 20/11/2020.

[2] PLANALTO. LEI Nº 7.802, DE 11 DE JULHO DE 1989. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/l7802.htm. Acesso em: 20/11/2020.

[3] CONAMA. Conselho Nacional de Meio Ambiente. Resolução Nº 401, de 4 de novembro de 2008. DOU Nº 215, 5/11/2008. p.108-109. Disponível em: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=589. Acesso: 20/11/2020. Acesso em: 20/11/2020.

[4] CASA CIVIL. LEI Nº 12.741, DE 8 DE DEZEMBRO DE 2012. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12741.htm. Acesso em: 20/11/2020.

[5] CASA CIVIL. LEI No 8.846, DE 21 DE JANEIRO DE 1994. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/L8846.htm#:~:text=Art.,momento%20da%20efetiva%C3%A7%C3%A3o%20da%20opera%C3%A7%C3%A3o. Acesso em: 20/11/2020.

[6] SLTI. SECRETÁRIA DE LOGÍSTICA E TECNOLOGIA DA INFORMAÇÃO. MPDG. PORTARIA Nº 92, DE 24 DE DEZEMBRO DE 2014. Padrões de Interoperabilidade de Governo Eletrônico – ePING. Versão 2018. Disponível em: http://eping.governoeletronico.gov.br/. Acesso em: 20/11/2020.

[7] ME. Ministério da Ecônomia, Secretaria Especial de Desburocratização, Gestão e Governo Digital. Resolução Nº 2, DE 16 DE MARÇO DE 2020. Disponível em: https://www.in.gov.br/en/web/dou/-/resolucao-n-2-de-16-de-marco-de-2020-249025238. Acesso em: 20/11/2020.

[8] Presidência. Decreto Nº 10.468, DE 18 DE AGOSTO DE 2020. Disponíl em: http://www.planalto.gov.br/ccivil_03/_ato2019-2022/2020/decreto/D10468.htm. Acesso em: 20/11/20202.

[9] ANVISA. Agência Nacinal e Vigilância Sanitária. Instrução normativa conjunta. INC Nº 2, DE 7 DE FEVEREIRO DE 2018. Disponível em: https://www.in.gov.br/materia/-/asset_publisher/Kujrw0TZC2Mb/content/id/2915263/do1-2018-02-08-instrucao-normativa-conjunta-inc-n-2-de-7-de-fevereiro-de-2018-2915259. Acesso em: 22/11/2020.

[10] R. C. Luo, Chih-Chen Yih and Kuo Lan Su, “Multisensor fusion and integration: approaches, applications, and future research directions,” in IEEE Sensors Journal, vol. 2, no. 2, pp. 107-119, April 2002, doi: 10.1109/JSEN.2002.1000251.

[11] H. Cho, Y. Seo, B. V. K. V. Kumar and R. R. Rajkumar, “A multi-sensor fusion system for moving object detection and tracking in urban driving environments,” 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014, pp. 1836-1843, doi: 10.1109/ICRA.2014.6907100.77

[12] R. O. Chavez-Garcia and O. Aycard, “Multiple Sensor Fusion and Classification for Moving Object Detection and Tracking,” in IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 2, pp. 525-534, Feb. 2016, doi: 10.1109/TITS.2015.2479925.

[13] L. Shimei, Z. Jianhong, L. Enfeng and H. Gang, “Design of Industrial Internet of Things Gateway with Multi-source data Processing,” 2020 International Conference on Computer Engineering and Application (ICCEA), Guangzhou, China, 2020, pp. 232-236, doi: 10.1109/ICCEA50009.2020.00058.

[14] M. Baktashmotlagh, A. Bigdeli and B. C. Lovell, “Dynamic resource aware sensor networks: Integration of sensor cloud and ERPs,” 2011 8th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Klagenfurt, 2011, pp. 455-460, doi: 10.1109/AVSS.2011.6027375.

[15] Dujak, Davor & Sajter, Domagoj. (2019). Blockchain Applications in Supply Chain. 10.1007/978-3-319-91668-2_2.

[16] Hyvärinen, Hissu et al. “A Blockchain-Based Approach Towards Overcoming Financial Fraud in Public Sector Services.” Business & Information Systems Engineering 59 (2017): 441-456.

[17] F. Rizal Batubara, Jolien Ubacht, and Marijn Janssen. 2018. Challenges of blockchain technology adoption for e-government: a systematic literature review. In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age (dg.o ’18). Association for Computing Machinery, New York, NY, USA, Article 76, 1–9. DOI:https://doi.org/10.1145/3209281.3209317.

[18] Sara Saberi, Mahtab Kouhizadeh, Joseph Sarkis & Lejia Shen (2019) Blockchain technology and its relationships to sustainable supply chain management, International Journal of Production Research, 57:7, 2117-2135, DOI: 10.1080/00207543.2018.1533261

[19] Svein Ølnes and Arild Jansen. 2018. Blockchain technology as infrastructure in public sector: an analytical framework. In Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age (dg.o ’18). Association for Computing Machinery, New York, NY, USA, Article 77, 1–10. DOI:https://doi.org/10.1145/3209281.3209293

[20] J. Duan, A. Karve, V. Sreedhar and S. Zeng, “Service Management of Blockchain Networks,” 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), San Francisco, CA, 2018, pp. 310-317, doi: 10.1109/CLOUD.2018.00046.

[21] Gramoli, Vincent & Staples, Mark. (2018). Blockchain Standard: Can We Reach Consensus?. IEEE Communications Standards Magazine. 2. 16-21. 10.1109/MCOMSTD.2018.1800022.

[22] Abdul Jabbar & Samir Dani (2020) Investigating the link between transaction and computational costs in a blockchain environment, International Journal of Production Research, 58:11, 3423-3436, DOI: 10.1080/00207543.2020.1754487

[23] Walker, Cat. (2019). Immutability, Friend or Foe: An Analysis of Smart Contracts Against the Fundamentals of Contract Law.

[24] Divino, Sthéfano. (2018). SMART CONTRACTS: CONCEITOS, LIMITAÇÕES, APLICABILIDADE E DESAFIOS. 2771-2808.

[25] Csr, Prabhu. (2017). Overview – Fog Computing and Internet-of-Things (IOT). EAI Endorsed Transactions on Cloud Systems. 3. 154378. 10.4108/eai.20-12-2017.154378.

[26] Henriques, João & Caldeira, Filipe & Cruz, Tiago & Simoes, Paulo. (2020). Combining K-Means and XGBoost Models for Anomaly Detection Using Log Datasets. Electronics. 9. 10.3390/electronics9071164.


Referências utilizadas na etapa de seleção (2019):

[1] Qual a diferença entre produto perigoso e produto controlado. Site guia do TRC. Disponível em: http://www.guiadotrc.com.br/noticias/noticiaid.asp?id=30453. Acesso em: 29/06/2019.

[2] Produtos controlados. Site Pró-análise. Disponível em: https://www.pro-analise.com.br/produtos-controlados. Acesso em: 29/06/2019.

[3] Lei Nº 7.802 de 11 de Julho de 1989. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/l7802.htm. Acesso em: 29/06/2019.

[4] Lei Nº 8.588 de 27 de Novembro de 2006. Disponível em: http://www.indea.mt.gov.br/documents/363967/8546767/Agrot%C3%B3xicos+-+Lei+N.%C2%B0+8.588%2C+de+27+de+Novembro+de+2006.pdf/4bb46906-5450-83ac-5285-69c1b462b95e. Acesso em: 29/06/2019.

[6] ARTIGO: Rastreabilidade é uma ferramenta essencial para a Segurança do Alimento. GS1 Brasil. Disponível em: https://www.gs1br.org/noticias/artigo-rastreabilidade-%C3%A9-uma-ferramenta-essencial-para-a-seguran%C3%A7a-do-alimento. Acesso em: 29/06/2019.

[7] MPE Propõe ação contra as empresas revendedoras de agrotóxicos em Mato Grosso. Circuito Mato Grosso. Disponível em: http://circuitomt.com.br/editorias/juridico/138523-mpe-propoe-acao-contra-empresas-revendedoras-de-agrotoxicos-em-mato-grosso.html. Acesso em: 29/06/2019.

[8] COULORIS, George… [et al]. Sistemas distribuídos – conceitos e projeto 5º edição. Porto Alegre, Bookman, 2013.

[9]TANENBAUM, Andre S. STEEN, Maarten V. Sistemas distribuídos – princípios e paradigmas, 2º. São Paulo, Pearson Prentice Hall, 2007.

[10] ALVES, William Pereira. Banco de dados. 1º Ed. São Paulo, Erica, 2014.

[11]Pilar Manzanares. Lopez Juan. Pedro Muñoz. Gea Josemaria Malgosa. Sanahuja Juan Carlos Sanchez. Aarnoutse. An efficient distributed discovery service for EPCglobal network in nested package scenarios. Journal of Network and Computer Applications Volume 34, Issue 3, May 2011, Pages 925-937.

[12] FREIRES, Francisco. PINEHIRO, Francisco. Reverse Logistics Systems of Empty Packings of Agricultural Pesticides in Brazil. POMS 21st Annual Conference. Vancouver, Canada, 2010.

[13] MELLO, Mario Fernando; SCAPINI, Rosangela. Reverse logistics os agrochemical pesticide packaging and the impacts to the environment. Brazilian Jornal Of Operations & Production Management, Nº 13, 2016, P 110-117.

[14] MUSSO, Stefano; ROSANO, Mariangela; PERBOLI, Guido. Blockchain in logistics and suply chain: a Lean approach for designing real-world use case. IEEE Access. 2018.

[15] FERGUSON, Renee boucher. EPCglobal Network will track RFID data – goal is collaboration accross supply chain. EWEEK www.eweek.com. 2005.

[16] https://inpev.org.br/agendamento/Page/Home.aspx

[17] Min, Hokey. (2018). Blockchain technology for enhancing supply chain resilience. Business Horizons. 62. 10.1016/j.bushor.2018.08.012.

[18] Perboli, Guido et al. “Blockchain in Logistics and Supply Chain: A Lean Approach for Designing Real-World Use Cases.” IEEE Access 6 (2018): 62018-62028.

[19] SHARM, Kashini. SISSMAN, Maxwell. Building supply chain management with blockchain. ISE Magazine, Jul/2018.

[20] Dobrovnik, Mario and Herold, David Martin and Fürst, Elmar Wilhelm M. and Kummer, Sebastian (2018) Blockchain for and in Logistics: What to Adopt and Where to Start. Logistics, 2 (3). pp. 1-18. ISSN 2305-6290

[21] Notheisen, Benedikt & Cholewa, Jacob & Prasad Shanmugam, Arun. (2017). Trading Real-World Assets on Blockchain: An Application of Trust-Free Transaction Systems in the Market for Lemons. Business & Information Systems Engineering. 59. 10.1007/s12599-017-0499-8.

[22] O. Gogliano and C. Eduardo Cugnasca, “An Overview Of The EPCglobal Network,” in IEEE Latin America Transactions, vol. 11, no. 4, pp. 1053-1059, June 2013. Liang W, Cao J, Fan Y, Zhu K, Dai Q (2015) Modeling and Implementation of Cattle/Beef Supply Chain Traceability Using a Distributed RFID-Based Framework in China.

[24] Yong-Shin Kang, Yong-Han Lee, Development of generic RFID traceability services, Computers in Industry, Volume 64, Issue 5, 2013, Pages 609-623, ISSN 0166-3615.

[25] Pilar Manzanares-Lopez, Juan Pedro Muñoz-Gea, Josemaria Malgosa-Sanahuja, Juan Carlos Sanchez-Aarnoutse, An efficient distributed discovery service for EPCglobal network in nested package scenarios, Journal of Network and Computer Applications, Volume 34, Issue 3, 2011, Pages 925-937, ISSN 1084-804.

[26] Jakkhupan, Worapot, Somjit Arch-int and Yuefeng Li. “Erratum to: An RFID-based traceability system.” Telecommunication Systems 58 (2015): 273.

[27] Croplife International. Obsolete and unwanted pesticide stocks – practical guide on safeguarding, disposal and prevention. Belgica. 2017.

[28] Labinas, Adriana Mascarette, & Araujo, Marialdo Correa de. (2016). Reverse logistics system and the role of government oversight for preservation of water and soil quality: the case of pesticide empty containers. Revista Ambiente & Água, 11(4), 759-762.

[29] Missão/Visão INDEA MT. Disponível em: http://www.indea.mt.gov.br/missao-visao. Disponível em: 10/07/2019.

[30] S.K. Kwok, S.L. Ting, Albert H.C. Tsang and C.F. Cheung (2010) “A counterfeit network analyzer based on RFID and EPC”, Industrial Management & Data Systems, Vol. 110 No. 7, pp. 1018-1037

[31] Frey, R.Scott. (1995). The International Traffic in Pesticides. Technological Forecasting and Social Change. 50. 151-169. 10.1016/0040-1625(95)00051-B.

[32] Seol, Soonuk & Lee, Eun-Kyu & Kim, Wooseong. (2016). Indoor mobile object tracking using RFID. Future Generation Computer Systems. 76. 10.1016/j.future.2016.08.005.

[33] Chen, Jiann & Chen, Ming-Chiao & Chen, Chien-Wu & Chang, Yao-Chung. (2007). Architecture design and performance evaluation of RFID object tracking systems. Computer Communications. 30. 2070-2086. 10.1016/j.comcom.2007.04.003.

[34] J. Brusey & D. C. McFarlane (2009) Effective RFID-based object tracking for manufacturing, International Journal of Computer Integrated Manufacturing, 22:7, 638-647.

[35] Lei Nº 12.305 de Agosto de 2010. Art. XII. Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2010/lei/l12305.htm. Acesso em: 10/07/2019.

[36] Srinivasan, S & Hariharan, Ranganathan. (2013). RFID sensor network-based automation system for monitoring and tracking of sandalwood trees. International Journal of Computational Science and Engineering. 8. 154-161.

[37] Nargundkar, Sneha and Prabhakar Manage. “ZigBee Enabled RFID based Tracking System.” (2017).

[38] Zanfack, David & Nait Sidi Moh, Ahmed & Durand, David & Fortin, Jérôme. (2015). Using Internet of Things Technologies for a Collaborative Supply Chain: Application to Tracking of Pallets and Containers. Procedia Computer Science. 56. 550-557. 10.1016/j.procs.2015.07.251.

[39] Borgi, Tawfik & Zoghlami, Nesrine & Abed, Mourad. (2017). Big data for transport and logistics: A review. 44-49.

[40] Insumos agrícolas agroquímicos. Site do Ministério da Agricultura, Pecuária e Abastecimento. Disponível em: http://www.agricultura.gov.br/assuntos/importacao-e-exportacao/importacao-e-exportacao-insumos-agricolas-agroquimicos. Publicado 29/12/2016. Data de captura:10/07/2019.

[41] IMA. Registro para comércio de agrotóxico. Disponível em: http://www.ima.mg.gov.br/servicos/721-registro-para-o-comercio-de-agrotoxico. Data de captura:10/07/2019.

[42] Decreto Nº 4.074 de 4 janeiro de 2002. Disponível em: http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=515. Acesso em: 11/07/2019.

[43] Strover, S. (2001). Rural internet connectivity. Telecommunications Policy, 25(5), 331–347.

[44] Falta de internet no campo barra crescimento da agricultura de precisão. Canal Rural Uol. Disponível em: https://canalrural.uol.com.br/noticias/agricultura/falta-internet-campo/. Acesso em: 11/07/2019.

[45] Sinal fraco de internet no campo limita aproveitamento de tecnologia agrícola no Brasil. G1. Disponível em: https://g1.globo.com/economia/noticia/2019/05/21/sinal-fraco-de-internet-no-campo-limita-aproveitamento-de-tecnologia-agricola-no-brasil.ghtml. Acesso em: 11/07/2019.


Referências utilizadas no artigo ITK 2000:

[1] Cunha Leite, L. E. et. al. FlexTV — Uma Proposta de Arquitetura de Middleware para o Sistema Brasileiro de TV Digital. Revista de Engenharia de Computação e Sistemas Digitais. São Paulo: USP, 2000.

[2] Bandyopadhyay, Soma; Sengupta, Munmun; Maiti, Souvik; Dutta, Subhajit. Role Of Middleware For Internet Of Things: A Study. International Journal of Computer Science & Engineering Survey (IJCSES) Vol.2, No.3, August 2011.

[3] Nettikadan, David; Subodh Raj M.S. Smart Community Monitoring System using Thingspeak IoT Plaform. Disponível em: https://bit.ly/34fCANG. Acesso em: 05 Abr 2020.

[4] Kostelnik, Peter & Sarnovsky, Martin & Furdík, Karol. (2011). The Semantic Middleware for Networked Embedded Systems Applied in the Internet of Things and Services Domain. Scalable Computing: Practice and Experience. 12. Disponível em: https://bit.ly/2yCX6fI. Acesso em 27 mar 2020.

[5] Pahl, Claus. (2007). Semantic model-driven architecting of service-based software systems. Information and Software Technology. 49. 838-850. 10.1016/j.infsof.2006.09.007. Disponivel em: https://bit.ly/2wm5cZq. Acesso em: 27 mar 2020.

[6] Puliafito A., Cucinotta A., Minnolo A.L., Zaia A. (2010) Making the Internet of Things a Reality: The WhereX Solution. In: Giusto D., Iera A., Morabito G., Atzori L. (eds) The Internet of Things. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1674-7

[7] Reiners, René & Zimmermann, Andreas & Jentsch, Marc & Zhang, Yan. (2009). Automizing Home Environments and Supervising Patients at Home with the Hydra Middleware Application Scenarios using the Hydra Middleware for Embedded Systems.